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Abstract— The present paper shows a systematic approach
to modeling and control mobile manipulators that transforms
the problem to the modeling of a stationary manipulator sta-
tionary with nonholonomic kinematic constraints on the joints.
The task-space control consists in an internal compensator
of the dynamics of the mobile manipulator and an external
proportional–derivative (PD) control with feed-forward of the
posture acceleration and an estimate of the derivative of the
posture kinematic model. Finally, a numerical experiment
is presented using the proposed control and the results are
analyzed.
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I. INTRODUCTION

The robots are coming out from the structured environ-
ments in factories and they begin to appear in places such
as houses, offices and hospitals, where there is little control
on the surroundings or not at all (Khatib 1999); the mobile
manipulators are a solution for these new workspaces.
Basically, a mobile manipulator is a stationary manipulator
mounted on a mobile robot so it may perform simultane-
ously the tasks of locomotion and manipulation; these capa-
bilities give to the mobile manipulator the advantages over
stationary manipulators of a bigger task space and a greater
autonomy; a mobile manipulator has also disadvantages,
such as the presence of nonholonomic kinematic constraints.

Previously, the control of mobile manipulators focused on
handling separately the tasks of locomotion and manipula-
tion, for example in Wang et al. (2008) the locomotion task
is the issue, or in Yu et al. (2008) where the manipulation
task was the control problem; currently the control problem
is to perform both tasks simultaneously, for example in An-
daluz et al. (2010), where a kinematic control is developed;
there are literature that presents results with the dynamic
control of a mobile manipulator; in Korayem et al. (2010)
an optimal dynamic control for a mobile manipulator is
developed to track a trajectory that avoids obstacles while
considering the maximum load-carrying capacity of the
robot. On the other hand, the kinematic modeling of mobile
manipulators is still treated as a three-step operation: the
modeling of locomotion, the modeling of manipulation and

their combination in a global kinematic model; a technique
to achieve this operation is in Luca et al. (2006), where
the kinematic models of locomotion and manipualtion are
combined through the so called extended Jacobian, but these
models are still obtained by different techniques.

The present paper shows a methodology for the modeling
and the control of a mobile manipulator in task space; the
mobile manipulator is modeled as an stationary manipulator
with kinematic constraints on the joints variables. The out-
line of this work is as follows: first, a review is presented on
modeling techniques for stationary manipulators and mobile
robots(Section II). Then, an integrated modeling technique
is proposed to obtain the kinematic model of mobile ma-
nipulators, transforming the nonholonomic constraints to a
mapping between the actuation space and the joint space,
using the so called configuration kinematic model (Section
III). The resulting kinematic model is applied to obtain a
dynamic model of the mobile manipulator (Section IV).
Then, a task-space control is developed (Section V.) Finally,
the results of numerical simulations for the task-space
control are showed assuming a 5-degree of freedom (DOF)
differential-traction mobile manipulator (Section VI).

II. KINEMATIC MODELING TECHNIQUES FOR

STATIONARY AND MOBILE ROBOTS

In wheeled mobile robots, the motion is determined by
the kinematic constraints of the wheels. A mechanical sys-
tem is said to be holonomic if there is a set of k constraints
to the motion; these constraints may be expressed as

hi(q) = 0, i = 1, . . . , k (1)

where q(t) ∈ R
n is the generalized-coordinates vector of

the mechanical system and hi(q) are scalar functions; such
constraints are geometric and they limit where may be the
system configuration. A mechanical system is called non-

holonomic if its motion is limited by constraints expressed
as

ai(q, q̇) = 0 (2)

where q̇(t) ∈ R
n is the generalized-velocities vector and

ai(q, q̇) are scalar functions; these constraints limit how the
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mechanical system can move, but does not restrict where
the system can be.

In a stationary manipulator, the kinematic model de-
scribes the relationship between the posture motion of the
robot and its joints motion. This model is conceptually
obtained through the so called forward kinematics; the
forward kinematics is usually expressed as

rm(t) = fm(qm(t)) (3)

where rm(t) ∈ R
pm is the posture variables vector, qm(t) ∈

R
nm is the joints displacement vector of the manipulator,

pm is the dimension of the task space of the manipulator
and nm is the dimension of qm, usually called degree
of freedom (DOF). The kinematic model of a stationary
manipulator with full-actuated independent joints is then
obtained through the time derivative of (3)

ṙm(t) = Jm(qm)q̇m(t) (4)

where ṙm ∈ R
p
m are the posture velocities, q̇m ∈ R

n
m are the

joint velocities of the manipulator, and the matrix Jm(q) ∈
R

pm×nm is the so called Jacobian and it is defined as

Jm(qm) =
∂fm

∂qm
(qm). (5)

In mobile robots, there are two kinds of kinematic models
(Campion et al. 1996). The first one establishes the relation
of the posture motion of the final effector and the actuators
motion. The posture kinematic model of a wheeled mobile
robot with differential traction can be expressed as

ṙb(t) = B(qb)ηb (6)

where ηb(t) ∈ Rnb−k is the vector which contains the
velocities of the actuators, qb ∈ R

nb is the configuration of
the mobile base, nb and pb are the dimensions of the mobile
base configuration and posture, and B(qb) ∈ Rpb×(nb−k) is
a matrix with its columns are a base of the null space of the
nonholonomic constraints; the posture kinematic model is
useful in the computation of control laws in the task space;
on the other hand, the configuration kinematic model is used
to simplify the dynamic model of mobile robot.

The second model describes a relation between the
motion of the joint displacements and the motion of the
actuators, called configuration kinematic model, and it is
defined as

q̇b = Sb(qb)ηb (7)

where Sb(q) ∈ Rnb×(nb−k) is a matrix with its columns
belongs to the null space of the constraint matrix Ab.
For example, in a differential-traction mobile robot the
configuration kinematic model can be defined as

Sb(q) =





cosφ 0
sinφ 0
0 1



 . (8)

It is important to remark that Sb(q) is an annihilator of the
kinematic constraints, such that

Ab(qb)
TSb(qb) = 0 (9)

where the matrix Ab(q) ∈ R
nb×k defines the nonholonomic

kinematic constraint

Ab(q)q̇ = 0; (10)

this fact could be used to simplify the dynamic model.

III. KINEMATIC MODELING OF MOBILE MANIPULATORS

The problem with the current methods of kinematic
modeling of mobile manipulators is that they separate the
modeling of the mobile base from the modeling of the
manipulator arm. As a second step, the kinematic models
of the mobile base and the manipulator are obtained; the
kinematic model of the mobile base can be derived from
the forward kinematics; on the other hand, the geometric
Jacobian could be used in the kinematic model of the
mobile manipulator. As a third step, these models are
united through the extended Jacobian, which inserts the
effects of the nonholonomic constraints in the model. The
present Section shows these methods and introduces an
integrated kinematic modeling technique for mobile manip-
ulators which uses those tools already in use for manipulator
arms, such as the Denavitt–Hartenberg parameters and the
geometric Jacobian.

As stated before, the forward kinematics of the mobile
base and the manipulator arm are determined through
different techniques; one way to determine the forward kine-
matics of a mobile manipulator is to use the homogeneous
transformations

T 0
n = T 0

b T
b
n (11)

where the matrix T 0
b ∈ R

4×4 is the homogeneous transfor-
mation of the mobile base that goes from a frame {b} fixed
on the mobile base to a frame {0} fixed on the surface on
which the mobile base moves, and the matrix T b

n ∈ R
4×4

is the homogeneous transformation of the manipulator arm
that goes from a frame {n} fixed on the last link of the
mobile manipulator to the frame {b}. The equation (11)
indicates how to combine the forward kinematics of both
the mobile base and the manipulator arm but does not state
how to calculate the required homogeneous transformations
T 0
b and T b

n; the homogeneous transformation of the mobile
manipulator,T b

n, could be calculated through the Denavitt–
Hartenberg method; on the other hand, there is not a
standard method to find the homogeneous transformation
of mobile base, T 0

b , on the reviewed literature.
It is important to remark that the kinematic model of a

mobile manipulator must take account of the relationship
between the actuation variables and the configuration vari-
ables; Usually in a manipulator arm, the relation between
the joint variables and the actuation variables is the identity,
but in a system with nonholonomic constraints this is
not the case. After obtaining the kinematic models, they
are combined using, for example, the so called extended
Jacobian (Luca et al. 2006), which is defined as

ṙ =
[

Jb(qb)Sb(qb) Jm(qm)
]

η (12)
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then the transformation (6) is applied, thus the following
expression is obtained

q̇ = S(q)η
η̇ = −M(q)−1m(q, η)

+M(q)−1S(q)TS(q)τ
(24)

where

M(q) = S(q)TD(q)S(q)

m(q, η) = S(q)TD(q)Ṡ(q)η
+S(q)TC(q, S(q)η)S(q)η
+S(q)T g(q)

(25)

It is important to remark that the state dimension in (24) is
less than in (22).

V. ROBUST LYAPUNOV-BASED CONTROL IN TASK SPACE

OF A MOBILE MANIPULATOR

The proposed control in this paper is divided in two
control loops in cascade. The internal loop control uses
an inverse dynamics control. The external control loop is
a resolution of acceleration control over the task space.

The inverse dynamics compensator is based on the ex-
pression (22) to find a suitable τ such that it cancels the
dynamics of a nominal system

τ =
(

S(q)TS(q)
)−1

(

M̂(q)a+ m̂(q, η)
)

(26)

where a(t) ∈ R
n−k is the acceleration reference for the

system, M̂ and m̂ are the nominal values of the matrices
M and m. Applying (26) to (22) results in the system

q̇ = S(q)η
η̇ = a+ ǫd

(27)

where ǫd is the uncertainty of the dynamic model and is
defined as

ǫd = Ea+M−1m̃, (28)

E is a matrix defined by

E = M−1M̂ − I, (29)

I is the identity matrix and m̃ is

m̃ = M−1(m̂−m); (30)

the new system (27) can have any other desired control in
an external loop.

The relation between the actuators accelerations and task-
space acceleration is given by the time derivative of (7)

r̈ = B(q)η̇ + ξ (31)

where ξ ∈ R
m is defined as

ξ = Ḃ(q)η, (32)

and Ḃ(q) is the time derivative of B(q). A problem with
(32) is to obtain explicitly Ḃ(q). In the present paper a
method is proposed to estimate numerically the value of
such expression, which uses only numerical information

about the values of B(q). First, the equation (31) is rewrote
as

ξ = −B(q)η̇ + r̈; (33)

then, the definitions of r̈ and η̇ are applied to (33)

ξ = −B(q)
d

dt
η +

d

dt
ṙ (34)

and finally the expression (19) to the first term on the right

ξ = −B(q)
d

dt
η +

d

dt
(B(q)η) . (35)

An estimate of the expression (35) could be founded
through Euler approximation of the derivative

ξ̂ =
1

h
(B(q(t))−B(q(t− h)))η(t− h). (36)

where h ∈ R is the sampling period. Then the equation (35)
can expressed as

ξ = ξ̂ + ǫk (37)

where ǫk is the approximation error and is in the order of
o(h2). The resolved acceleration in the actuators is then
defined as

a = B(q)†(ax − ξ̂) (38)

where ax ∈ R
n−k and (·)† denotes the pseudo-inverse.

For the external control loop, a robust task-space control
is used (Spong et al. 2006). Firstly, a measure of the error
on task space is proposed r̃, such that

r̃(t) = rd(t)− r(t) (39)

where rd(t) ∈ R
n is the desired posture. The proposed

control law is

ax = r̈d + k1 ˙̃r + k0r̃ + δ (40)

where ax is the resulting acceleration on task space, ˙̃r is
the time derivative of the error with respect time, k0 and k1
are some positive scalar constants; one possible definition
of δ ∈ R

m is

δ =

{

−ρ(e) GTPe
‖GTPe‖

if ‖GTPe‖ 6= 0

0 if ‖GTPe‖ = 0
(41)

where ρ is a function of the error over the scalars, defined
as

ρ(e) =
1

1− α

(

γ1 ‖e‖+ γ2 ‖e‖
2
+ γ3

)

, (42)

and α and γi are scalars. The stability of the control is
showed in Theorem 1.

Theorem 1. The system (24) with the controls in cascade
(26), (38) and (40) is stable if δ is defined as (41).
Proof : Let be the system (24) with the controls in cascade
(26), (38) and (40). From control (38) he following expres-
sion can be obtained

ax = ξ̂ +B(q)a (43)

and substituting (27) and (37) in (43) the result is

ax = ξ +B(q)η̇ − ǫ. (44)
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where ǫ is defined as

ǫ = ǫk +B(q)ǫd. (45)

Applying (44) to (40) the following error dynamic can be
obtained

¨̃r + k1 ˙̃r + k0r̃ + δ + ǫ = 0. (46)

The equation (46) can be expressed as state-space equation

ė = Fe+G(δ + ǫ) (47)

where e(t) is the state of the error, defined as

e =

(

r̃
˙̃r

)

, (48)

the matrix F is constant and defined as

F =

(

0 I

−k0I −k1I

)

, (49)

G is the input matrix

G =

(

0
I

)

. (50)

To test the stability of (47) a candidate Lyapunov function
is proposed

V = eTPe (51)

where P is a positive-definite matrix. The time derivative
of (51) is

V̇ = eT (FTP + PF )e+ 2eTPG(δ + ǫ). (52)

Since k0 and k1 are chosen such that the matrix F is
Hurwitz, it is possible chose a positive-definite matrix Q

such that
FTP + PF = −Q, (53)

where P is definite-positive matrix, and (52) results in

V̇ = −eTQe+ 2eTPG(δ + ǫ). (54)

A control that can ensure that (54) is negative or zero is
(41).

VI. NUMERICAL EXPERIMENTS AND RESULTS

To test the proposed method, the model of a mobile
manipulator was obtained; it is assumed that mobile ma-
nipulator is composed by a Pioneer 3DX mobile robot and
a Cyton manipulator arm with 7 DOF. The Pioneer 3DX is
a differential traction mobile robot and only two joint of the
Cyton robot were considered, thus the mobile manipulator
is modeled as a 5 DOF system.

To obtain the kinematic constraints it is assumed that
the mobile manipulator is a unicycle without slipping; also
the surface on which the mobile base moves is flat and
horizontal. It is also assumed that the manipulator arm is a
2-joint planar robot, and its links are modeled like rods. The
model was obtained numerically using the Matlab’s robotics
toolbox (Corke 1996).

To obtain the forward kinematics, the mobile base is
modeled as a 2-joint Cartesian manipulator and a third

TABLE I

THE DENAVIT–HARTENBERG PARAMETERS FOR THE 5-DOF MOBILE

MANIPULATOR. THE ANGLES ARE IN RADIANS AND THE DISTANCES IN

MILLIMETERS.

i α a θ d Kinematic
[mm] [mm] pair

1 −π/2 0 0 0 prismatic
2 π/2 0 −π/2 0 prismatic
3 0 0 0 237 revolute
4 0 150 0 0 revolute
5 0 168 0 0 revolute

revolute joint. From this description the Denavit–Hartenberg
parameters can be obtained.

Following the assumption that a mobile manipulator
could be modeled as a stationary manipulator, the config-
uration of the mobile manipulator, q(t) ∈ R

5, is defined
as:

q =
[

d1 d2 θ3 θ4 θ5
]T

(55)

where d1, d2 are the surface coordinates (x, y) of the mobile
base, θ3 = φ is the orientation of the mobile base, and θ4,
θ5 are the joint variables of the manipulator arm.

On the other hand, the kinematic constraint of the 5-DOF
mobile manipulator is given by the matrix A(q) ∈ R

5×1 and
it is defined by the expression

A(q) =
[

sin q3 − cos q3 0 0 0
]T

. (56)

A possible configuration kinematic model that satisfy (56)
is the equation

q̇ = S(q)η (57)

where η ∈ R
4 are actuation velocities, defined as:

η =
[

v q̇3 q̇4 q̇5
]T

(58)

where v(t) is an scalar which describes the lineal velocity of
the mobile robot, and configuration kinematic model S(q) ∈
R

5×4 is defined by

S (q) =













cos q3 0 0 0
sin q3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1













(59)

which satisfy the property of being an annihilator for (56).
The matrices D(q) and C(q, q̇) of the system (22) are

obtained through the procedure presented in Spong et al.

(2006); the data required to calculate those matrices appear
on Table I and Table II.

The control described in the Section V was applied to a
numerical model of the mobile manipulator. The reference
is a circular trajectory in task space (Figure 2). It is
remarked that the motion is counterclockwise and the initial
movements of the robot are in the other direction. The
tracking error converges exponentially to zero and it is
stable in the time frame of the simulation (Figure 3).
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TABLE II

LINK DATA FROM THE MOBILE MANIPULATOR.

i Length Wide Height Mass
[mm] [mm] [mm] [kg]

3 445 393 237 9.0
4 150 50 50 0.1
5 168 50 50 0.1
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Fig. 2. The reference path and the motion of the robot.

VII. CONCLUSIONS

This paper shows a systematic approach to modeling
mobile manipulators that transforms the problem to the
modeling of a stationary manipulator stationary with non-
holonomic kinematic constraints on the joints; when com-
pared with previous methods, this approach allows to use
the same tools as the stationary manipulator and it only
requires extending some of the tools in order to handle the
kinematic constraints. It is also presented a task-space con-
trol that consist in an internal compensator of the dynamics
of the mobile manipulator and an external PD control with
feed-forward of the posture acceleration and an estimate
of the derivative of the posture kinematic model. Finally,
a numerical experiment is presented using the proposed
control and the results are analyzed.

In future work, it will develop a robust priority control
in the task space for a mobile manipulator. Also, it will be
developed a robot-aided manipulation system to test these
controls.
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